

Chi-squared test, χ^2 test

Chi-squared test is used to determine whether two variables from the same sample are independent.

Chi-squared test examines the difference between the observed values we obtained from our sample and the expected values we have calculated.

Observed values

	Smoker	Non – smoker	Total
Male	350	150	500
Female	230	270	500
Total	580	420	1000

Expected values

	Smoker	Non – smoker	Total
Male			500
Female			500
Total	580	420	1000

Null hypothesis H_0 : The two variables are independent. Alternative hypothesis H_1 : The two variables are not independent.

Expected value for each cell = $\frac{Row_{Total} \ge Column_{Total}}{Total}$

$$\chi^2_{calc} = \sum \frac{(f_o - f_e)^2}{f_e}$$

where f_o is an observed frequency and f_e is an expected frequency.

Similar observed and expected values, small $(f_o - f_e)$, small χ^2_{calc} .

Largely different between observed and expected values, large $(f_o - f_e)$, large χ^2_{calc} .

Reject H_0 when χ^2_{calc} > critical value.

Significance level

Significance level indicates the minimum acceptable probability that the variables are independent.

Degree of freedom = (Row - 1) (Column - 1)

Degrees of				Probability	of a larger	value of x ²			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21

Percentage Points of the Chi-Square Distribution

Critical value of χ^2 is will be provided in exam now.

The p-value

p-value is provided when finding χ^2 on the calculator.

p-value is the probability of obtaining observed values as far or further from the expected values, assuming the variables are independent.

Reject H_0 when p < significance level.

GDC skills Casio

Menu \rightarrow 2 Stat \rightarrow F3 TEST \rightarrow F3 CHI \rightarrow F2 2WAY \rightarrow Choose Observed: Mat A \rightarrow F3 DIM \rightarrow m is row, n is column \rightarrow Enter data \rightarrow Exit \rightarrow Exit \rightarrow EXE

 \rightarrow Continue to find **expected value** \rightarrow F6 Mat \rightarrow Mat B \rightarrow EXE

TI 84

2nd → Matrix → EDIT → [A] → put in row and column → Enter data → Stat → Tests → C: χ^2 test

χ^2 – Test
Observed: [A]
Expected: [B]

 \rightarrow Continue to find **expected value** $\rightarrow 2^{nd} \rightarrow Matrix \rightarrow [B]$

T-nspire

Menu \rightarrow 7: Matrix \rightarrow 1: Create \rightarrow 1: Matrix \rightarrow Put data \rightarrow Ctrl Var

\rightarrow A \rightarrow Enter

Then you will see the screen like below.

₫ 1.1	Þ	*Unsaved 🔻		ίΩΧ
[110 98	$\begin{bmatrix} 106 \\ 86 \end{bmatrix} \rightarrow a$		[110 98	106 86
				~
				1/99

→ Menu → 6: Statistics → 7: Stat Tests → 8: χ^2 2-way test →

Observed Matrix: a

→ Continue to find **expected value** → Var → stat.expmatrix → enter

1. David Carried out a χ^2 test at the 5% significance level to determine whether a student's height impacts their chosen subject field: sport or music.

The following table shows the results of 400 students he surveyed.

	Sport	Music
> 180 cm	160	50
\leq 180 cm	40	150

(a) State the null hypothesis, H_0 , for this test.

(b) Complete the expected values table below.

	Sport	Music
> 180 cm		
\leq 180 cm		

(c) Write down the number of degrees of freedom.

(d) Write down the p - value for this test.

(e) State the result of the test. Give a reason for your answer.

2. Students in a class had their gender and food preference recorded from a choice of cake or chicken wings or fish ball. The table below shoes the results.

	Cake	Chicken wings	Fish ball
Boys	20	40	30
Girls	60	10	20

A χ^2 test was conducted at the 5% significance level.

(a) State the null hypothesis, H_0 , for this test.

(b) Write down the number of degrees of freedom.

(c) Write down the χ^2 statistic.

The critical value for this test is 5.99.

(d) State the result of the test. Give a reason for your answer.

T-test

Null hypothesis $H_0: \mu = \mu_0$ Alternative hypothesis $H_1:$ $H_1: \mu > \mu_0$ (one-tailed hypothesis) $H_1: \mu < \mu_0$ (one-tailed hypothesis) $H_1: \mu \neq \mu_0$ (two-tailed hypothesis, $\mu \neq \mu_0$ means $\mu > \mu_0$ or $\mu < \mu_0$)

$$t = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}}$$

One-tailed T-test

• If H_1 : $\mu < \mu_0$, we use the lower tail.

Reject H_0 if p-value < α .

Book a free trial lesson! WhatsApp: 9247 7667 COPYRIGHT © 2019 CM Square Learning Center. All rights reserved.

Two-tailed T-test

So, for a two-tailed alternative hypothesis,

GDC Skills

Casio

Calculate Test statistics (t)

Statistics input

 $\mathsf{Menu} \rightarrow \mathsf{2} \mathsf{Stat} \rightarrow \mathsf{F3} \mathsf{TEST} \rightarrow \mathsf{F2} \mathsf{t} \rightarrow \mathsf{F1} \mathsf{1}\text{-}\mathsf{SAMPLE}$

Data input

Menu \rightarrow Statistics \rightarrow enter data in List 1

Rad Norm1 d/c Real						
	List 1	List 2	List 3	List 4		
SUB						
4	60					
5	60					
6	69					
7	63					
63						
GRAPH CALC TEST INTR DIST						

F3 Test \rightarrow F2 t \rightarrow F1 1-SAMPLE

Rad Norm1 d/c Real	Rad Norm1 d/c Real
1-Sample tTest	1-Sample tTest
Data :List	μ >60
μ :>μ0	t =1.29141905
μ0 ÷60	p = 0.1220375
List :List1	$\bar{\mathbf{x}} = 61.8571429$
Freq :1	sx = 3.80475892
Save Res:None 🗸	n = 7
TIST	

Calculate the p-value

Menu \rightarrow 2 Stat \rightarrow 5 Dist \rightarrow F2 t \rightarrow F2 tcd

TI 84

Calculate Test statistics (t)

Statistics input

Stat → 2: T-Test

Data input

Stat \rightarrow 1: Edit \rightarrow enter the data

NORMAL	FLOAT AL	JTO REAL	RADIAN	MP	Ō
L1	L2	Lэ	Lu	Ls	1
64 58 59 60 69 63					
L1(8)=					_

Stat → 2: T-test

Book a free trial lesson! WhatsApp: 9247 7667 COPYRIGHT © 2019 CM Square Learning Center. All rights reserved.

Calculate the p-value 2nd \rightarrow Vars \rightarrow 6: tcdf

NORMAL FLOAT AUTO REAL RADIAN MP tcdf lower:3.39 upper:1E99 df:49 Paste	NORMAL FLOAT AUTO REAL RADIAN MP tcdf(3.39,1E99,49) 6.942616465E-4
--	--

T-nspire <mark>Calculate Test statistics (t)</mark>

Statistics input

Menu \rightarrow 6 Statistics \rightarrow 7 Stat Test and 2 t Test

₹ 1.1	Þ	*Doc	RAD 📘 🕽	\times	◀ 1.1	Þ	*Doc	rad 📋 🗙
Γ. Ι	t Test			^	tTest	6,6.12,0.25	5,50,0: stat.results	•
' I	μ0:	6					"Title"	"t Test"
		6.12	÷				"Alternate Hyp"	"µ ≠ µ0"
	·.	0.12	÷				"t"	3.39411
	Sx:	0.25	•				"PVal"	0.001372
	n:	50	•				"df"	49.
	Altornato Lura:						"X"	6.12
	Alternate Hyp.	Ha: μ + μυ					"SX := Sn-1X"	0.25
		OK Ca	incel				"n"	50.
			_	Ŧ	n			

Data input

Press "On" \rightarrow Add List & Spreadsheet \rightarrow enter data in List A and name it x.

₹ 1.	1 🕨		•Doc	RA	0 🚺 🗙
	Ax	B	С	D	î
=					_
3	59				
4	60				
5	60				
6	69				
7	63				-
A	x				\leftarrow

Press "On" \rightarrow Add Calculator \rightarrow Menu \rightarrow 6 Statistics

→ 7 Stat test, 2 t Test

Book a free trial lesson! WhatsApp: 9247 7667 COPYRIGHT © 2019 CM Square Learning Center. All rights reserved.

Calculate the p-value

Press "On" \rightarrow Add Calculator \rightarrow Menu \rightarrow 5 Probability, 5 Distribution \rightarrow 5 t Cdf

1. A population has known standard deviation σ = 3.97. A sample of size 36 is taken and the sample mean \bar{x} = 23.75. We are required to test the hypothesis H_0 : μ = 25 against H_1 : μ < 25. (a) Find: (i) the test statistic

(ii) the p-value.

(b) What decision should be made at a 5% level?

2. A population has known standard deviation σ = 4.23. A sample of size 40 is taken and the sample mean \bar{x} = 24.55. We are required to test the hypothesis H_0 : μ = 21 against H_1 : μ > 21. (a) Find: (i) the test statistic

(ii) the p-value.

(b) What decision should be made at a 5% level?

Exercise

1. Abhinav carries out a χ^2 test at the 1% significance level to determine whether a person's gender impacts their chosen professional field: engineering, medicine or law. He surveyed 220 people and the results are shown in the table.

	Engineering	Medicine	Law
Male	55	30	25
Female	35	45	30

(a) State the null hypothesis, H_0 , for this test.

(b) Calculate the expected number of male engineers.

(c) Find the p - value for this test.

Abhinav rejects H_0 .

(d) State a reason why Abhinav is incorrect in doing so.

2. On one day 180 flights arrived at a particular airport. The distance travelled and the arrival status for each incoming flight was recorded. The flight was then classified as on time, slightly delayed, or heavily delayed.

		At most 500 km	Between 500 km and 5000 km	At least 5000 km	TOTAL
tus	On time	19	17	16	52
al Sta	Slightly delayed	13	18	14	45
Arriv	Heavily delayed	28	15	40	83
	TOTAL	60	50	70	180

A χ^2 test is carried out at the 10% significance level to determine whether the arrival status of incoming flights is independent of the distance travelled.

(a) State the alternative hypothesis.

(b) Calculate the expected frequency of flights travelling at most 500 km and arriving slightly delayed.

(c) Write down the number of degrees of freedom.

- (d) Write down
- (i) the χ^2 statistic;
- (ii) the associated p value.

	20