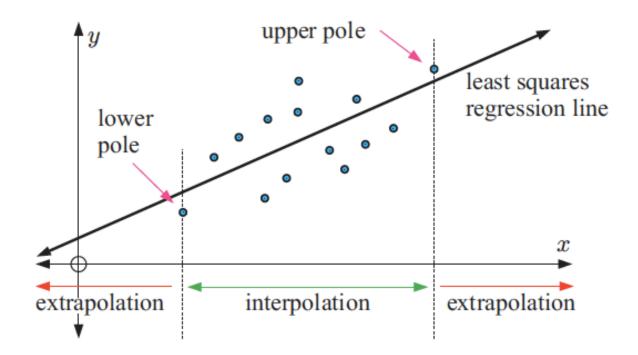


Regression line

Correlation is the relationship between two variables.

Pearson's correlation coefficient r


$$-1 \le r \le 1$$

The line of best fit must pass through the mean point and the y-intercept.

Estimate using interpolation or extrapolation

It is reasonable to interpolate between the poles. But unreliable to extrapolate outside the poles.

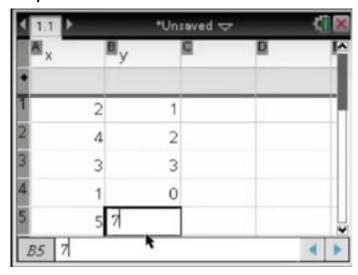
GDC Skill

TI 84

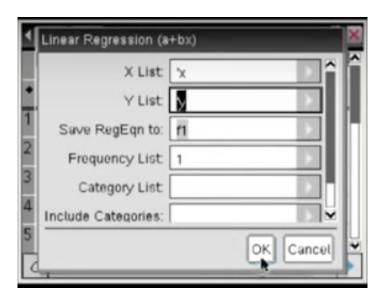
Stat \rightarrow Edit \rightarrow Put x in L1 and y in L2 \rightarrow Stat \rightarrow CALC \rightarrow 4: LinReg (ax + b)

Casio

Menu \rightarrow Stat \rightarrow Put x in L1 and y in L2 \rightarrow F6 \rightarrow F2 CALC \rightarrow F3 REG \rightarrow F1 X \rightarrow F1 or F2


CHECK!!

1Var XList	List 1
1Var Freq	List 2
2Var XList	List 1
2Var YList	List 2
2Var Freq	1



TI-nspire

New document → 4: Add Lists & Spreedsheet → Name A as x and B as y

 \rightarrow Menu \rightarrow 4: Statistics \rightarrow 1: Stat Calculations \rightarrow 4: Linear Regression (a + bx)

Find the equation and r value

1. Over 10 days the maximum temperature and number of car breakins was recorded for a city.

Maximum temperature	22	17	14	18	24	29	33	32	26	22
x (°C)										
Number of car break-	30	18	9	20	31	38	47	40	29	25
ins y										

(a) Find the ed	quation of	line of	best fit.
-----------------	------------	---------	-----------

(b) Calculate r for the data.	

2. The following table shows the average number of hours per day spent watching television by seven mothers and each mother's youngest child.

Hours per day that a	2.5	3.0	3.2	3.3	4.0	4.5	5.8
mother watches television							
(x)							
Hours per day that her	1.8	2.2	2.6	2.5	3.0	3.2	3.5
child watches television							
(y)							

The relationship can be modelled by the regression line with equation y = ax + b.

- (a) (i) Find the correlation coefficient.
 - (ii) Write down the value of a and of b.

Elizabeth watches television for an average of 3.7 hours per day.

(b) Use your regression line to predict the average number of hour
of television watched per day by Elizabeth's youngest child. Give
your answer correct to one decimal place.

IBDP Mathematics (SL) Regression line	Learning