

Prior learning		Topic 1 Number and Algebra	
Area of a	A = bh	The n th term of A.S.	$u_n = u_1 + (n-1)d$
parallelogram	b = base, h = height		
Area of a	$A = \frac{1}{2}hh$	The sum of n terms of	$S_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$
triangle	$n = 2^{5n}$	A.S.	
Area of a	$A = \frac{1}{2} (a + b)h$	The n th terms of G.S.	$u_n = u_1 r^{n-1}$
trapezium	a, b = parallel sides, h = height		
Area of a circle	$A = \pi r^2$, r is radius	The sum of n terms of	$S = \frac{u_1(r^n - 1)}{r \neq 1} = \frac{u_1(1 - r^n)}{r \neq 1}$
		G.S.	$s_n = r - 1 = 1 - r$, $r \neq 1$
Circumference	$C = 2\pi r, r \text{ is radius}$	Percentage error	$\mathcal{E} = \left \frac{V_A - V_E}{V_E} \right \ge 100\%$, where V_E is the
of a circle			exact value and V_A is the approximate
			value of v
Two points	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$	Compound interest	$FV = PV \ge \left(1 + \frac{r}{r}\right)^{kn}$, where
distance			V = 100kT
			n = number of years. $k =$ number of
			compounding periods per year,
			r% = nominal annual rate interest
Midpoint	$\begin{pmatrix} x_1 + x_2 & y_1 + y_2 \end{pmatrix}$		
Topic 2 Descriptive statistics		Topic 3 Logic, sets and probability	
Mean of a set of	$\overline{x} - \sum_{i=1}^{k} f_i x_i$	Truth tables	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
data	x = n		
	, where $n \sum_{i=1}^{\kappa} f_i$		F T T F T T F
			F F T F F F T T
Interquartile	$IQR = Q_3 - Q_1$	Probability of an event	$P(A) = \frac{n(A)}{a}$
range		Α	$\Gamma(A) = \frac{1}{n(U)}$
		Complementary events	P(A') = 1 - P(A)
		Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
		Mutually exclusive	$P(A \cap B) = 0$
		events	
		Independent events	$P(A \cup B) = P(A)P(B)$
		Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$

Topic 5 Geometry and trigonometry		Topic 6 Mathematical models	
Straight line equation	y = mx + c ; ax + by + d = 0	Axis of symmetry	$f(x) = ax^2 + bx + c \rightarrow x = \frac{-b}{2a}$
Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$	Topic 7 Introduction to differential calculus	
Cosine rule	$c^{2} = a^{2} + b^{2} - 2ab \cos C$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$	Derivative of x ⁿ	$f(x) = x^n \rightarrow f'(x) = nx^{n-1}$
Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	Derivative of a sum	$f(x) = ax^{n}, g(x) = bx^{m}$ $\rightarrow f'(x) + g'(x)$ $= nax^{n-1} + mbx^{m-1}$
Area of a triangle	$A = \frac{1}{2}absin C$		
Area of the	$A = 2\pi rh$		
curved surface of			
a cylinder			
Surface area of a	$A = 4\pi r^2$		
sphere			
Curved surface	$A = \pi r l$, where l is the slant height		
area of a cone			
Volume of a	$V = \frac{1}{3}$ x base area x vertical height		
pyramid or cone			
Volume of a	V = lwh		
cuboid	2		
Volume a	$V = \pi r^2 h$		
cylinder			
Volume of a	$V = \frac{4}{\pi r^3}$		
sphere	3		
Volume of a	V = Ah, where A is the area of		
prism	cross-section, h is the height		