

Exponents

Laws of exponents

$$a^x \times a^y = a^{x+y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$(a^x)^y$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

 $a^0 = 1$, a is all real numbers

$$0^0 = 0$$

$$a^{-x} = \frac{1}{a^x}$$

$$\frac{1}{a^{-x}} = a^x$$

$$\sqrt{a} = a^{\frac{1}{2}}$$

$$\sqrt[3]{a} = a^{\frac{1}{3}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

IBDP Mathematics (SL) Exponents

$$a^{x} x a^{y} = a^{x+y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

- 1. Simplify 3² x 3⁴ using the exponent laws.
- 2. Simplify $k^1 \ x \ k^9$ using the exponent laws.

3. Simplify $x^3 \times 3^2$ using the exponent laws.

4. Simplify $\frac{a^7}{a^2}$ using the exponent laws.	Learning
a-	
5. Simplify $\frac{6^5}{6^4}$ using the exponent laws.	
. 12	
6. Simplify $\frac{k^{12}}{k^{-2}}$ using the exponent laws.	

IBDP Mathematics (SL) Exponents

$$(a^{x})^{y}$$

$$(ab)^{x}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

$$a^{0} = 1, a \text{ is all real numbers}$$

$$0^{0} = 0$$

1. Write $(5^2)^3$ without brackets.

$(x^3)^5$ without brackets
3

3. Write $\left(\frac{2}{3}\right)^3$ without brackets.

4. Write $\left(\frac{x}{7}\right)^6$ without brackets.

		(3)	0 without hrackets
5	Write	<u> </u>	without hrackets

5. Write $\left(\frac{}{32a}\right)$ without brackets.

6. Write (4k) ⁹ with	out brackets.		
7. Write $(3a)^6$ with	out brackets.		
7. White (Su) With	sat brackets.		
8. Write $(3k^3 \times 8)^7$	without bracke	ets.	

IBDP Mathematics (SL) Exponents

$$a^{-x} = \frac{1}{a^x}$$

а		ax
1	_	ax
$\overline{a^{-x}}$	_	a

1. Write 3^{-3} without negative exponents.

2.	Write ($(5^3)^{-4}$	without negative	exponents.

3. Write $(27)^{-\frac{2}{3}}$ without negative exponents.	

4. Write $\frac{1}{9^{-\frac{3}{2}}}$ without negative exponents.

5. Write $\frac{1}{8^{-\frac{4}{3}}}$ without negative exponents.

6. Write $\frac{1}{4^{-\frac{3}{2}}}$ without negative exponents.