IBDP Mathematics Analysis and approaches (SL) Integration – Kinematic

Kinematic

Displacement = $\int v(t) dt$

Distance = $\int_{t_1}^{t_2} v(t) dt$ = The area below the curve

Velocity = $\int a(t) dt$

1. A car moves in a straight line has velocity $v \ km \ s^{-1}$. Find the expression of displacement $s \ km$ at time t seconds. The velocity v is given by $v(t) = 6e^{2t} + t$. When t = 0, s = 10.

2. A particle moves in a straight line with velocity function $v(t) = \cos t \quad m \ s^{-1}$. Find the distance travelled from t = 0 to $t = \frac{\pi}{2}$.

IBDP Mathematics Analysis and approaches (SL) Integration – Kinematic

Paper 1

1. ⁽ⁱ⁾ A toy car travels with velocity $v ms^{-1}$ for six seconds. This is shown in the graph below.

(a) Write down the car's velocity at t = 3.

(b) Find the car's acceleration at t = 1.5.

2. A rocket moving in a straight line has velocity $v \ kms^{-1}$ and displacement $s \ km$ at time t seconds. The velocity v is given by $v(t) = 6e^{2t} + t$. When t = 0, s = 10.

Find an expression for the displacement of the rocket in terms of t.

Book a free trial lesson! WhatsApp: 9247 7667 COPYRIGHT © 2019 CM Square Learning Center. All rights reserved. IBDP Mathematics Analysis and approaches (SL) Integration – Kinematic

Paper 2

1. The A particle moves in a straight line. Its velocity $v ms^{-1}$ after t seconds is given by

v = 6t - 6, for $0 \le t \le 2$.

After p seconds, the particle is 2 m from its initial position. Find the possible values of p.

2. A particle moves in a straight line with velocity $v = 12t - 2t^3 - 1$, for $t \ge 0$, where v is in centimeters per second and t is in seconds.

(a) Find the acceleration of the particle after 2.7 seconds.

(b) Find the displacement of the particle after 1.3 seconds.

