

Trapezoidal rule

$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h \big((y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \big), \text{ where } h = \frac{b-a}{n}$$

1. Use the trapezoidal rule with 6 subintervals to estimate the area

between $f(x) = \sqrt{6 - x^2}$ and the x-axis from x = 1 to x = 2.

2. Use the trapezoidal rule with 4 subintervals to approximate the

area between the x-axis and:

(a) $f(x) = \frac{2}{\sqrt{x}}$ from x = 2 to x = 4(b) $f(x) = -x^2 + 6x - 4$ from x = 1 to x = 3

3. (a) Use the trapezoidal rule with 6 subintervals to calculate the area between the x-axis and f(x) = 3 - x from x = 0 to x = 3.

Integration rules

Reverse of differentiation

Find the derivative of $f(x) = x^3$ and $f(x) = x^3 + 10$.

Indefinite integral:

$$\int f'(x)\,dx = f(x) + C$$

C is constant. Derivative of a constant is 0.

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

1. Find $\int 3x^2 dx$.

2. Find $\int 5x^6 + 20 \, dx$.

Definite integral:

 $\int_a^b f'(x)\,dx$

Find the area under the curve.

The area below the curve between the line x = b and x = a.

$$Area = \int_a^b f'(x) dx$$
, where $b > a$.

 $\int_{a}^{b} f'(x) dx$ = $[f(x)]_{a}^{b}$ = f(b) - f(a)

GDC skills

$$\int_1^3 2x + 1 \, dx$$

Casio

OPTN \rightarrow F4 CALC \rightarrow F4 $\int dx$

TI-84

Math \rightarrow 9: fn Int(

TI-nspire

Menu \rightarrow 4: Calculus \rightarrow 2: Numerical integral

1. Find the area between x-axis and $f(x) = x^4$ from x = 1 to

x = 3.

2. Find the area between x-axis and $f(x) = -x^2 + 4x + 2$ from x = 0 to x = 2.

Exercise

1. The diagram below shows part of the graph of $y = -x^2 + 2x$. The shaded region is between x = 0 and x = m.

- (a) Write down the value of m.
- (b) Find the area of the shaded region.

2. Find the area of the region bounded by the curve $y = x^2$, the

x-axis and x = 2.

3. Find the area of the region enclosed by $y = x^2 + 1$, the

x-axis, x = 1 and x = 2.

4. The following diagram shows part of the graph of

f(x) = 3x + 1.

Find the area of the region enclosed by f(x), the x-axis,

x = 0 and x = 2.

