

Geometric sequence

The nth term of a geometric sequence

$$u_n = u_1 r^{n-1}$$

$$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, \ r \neq 1$$

$$S_{\infty} = \frac{u_1}{1-r}, |r| < 1$$

Examples of geometric sequence

$$5, -1, \frac{1}{5}, -\frac{1}{25}$$

 u_{n} is the n^{th} term

r is the common ratio

$$r = \frac{u_2}{u_1} \text{ or } \frac{u_{n+1}}{u_n}$$

 \boldsymbol{S}_n is sum of n terms

Show geometric sequence:

$$\frac{\mathbf{u}_2}{\mathbf{u}_4} = \frac{\mathbf{u}_3}{\mathbf{u}_3}$$

Show Geometric sequence

1. Show th	at 12, –6, 3,	$-\frac{3}{2}$, is geo	ometric and	find the commo	n ratio.
2. Show th ratio.	at 8, $4\sqrt{2}$, 4,	$2\sqrt{2}$, is g	geometric an	d find the comm	non

List the terms

1. Consider the sequence defined by $u_n = 3(2)^{n-1}$ List the first four terms of the sequence.
2. Consider the sequence defined by $u_n = 4(-3)^{n-1}$ List the first four terms of the sequence.

Find the general term

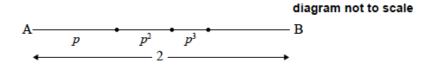
$$\mathbf{u_n} = \mathbf{u_1} \mathbf{r^{n-1}}$$

1. A geometric sequence has $u_2 = -2$ and $u_7 = 64$. Find the expression of general term.
2. A geometric sequence has $u_3 = 8$ and $u_6 = -1$. Find the expression
of general term.

IBDP Mathematics Analysis and approaches (SL) Geometric sequence

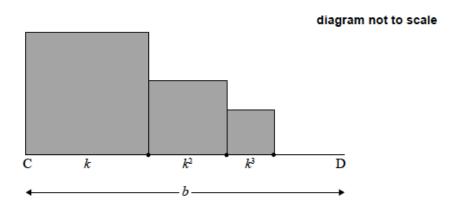
Paper 1 exercise

1. ■ Three consecutive terms of a geometric sequence are x – 3,
6 and x + 2.
Find the possible values of x.


- 2. The first three terms of a infinite geometric sequence are m –
- 1, 6, m + 4, where m $\in \mathbb{Z}$.
- (a) (i) Write down an expression for the common ratio, r.
 - (ii) Hence, show that m satisfies the equation $m^2 + 3m 40 = 0$.
- (b) (i) Find two possible values of m.
 - (ii) Find the possible value of r.

(ii) Calculate the sum of the sequence.

- (c) The sequence has a finite sum.
 - (i) State which value of leads to this sum and justify your answer.


3. The following diagram shows [AB], with length 2 cm. The line is divided into an infinite number of line segments. The diagram shows the first three segments.

The length of the line segments are p cm, p^2 cm, p^3 cm, ... , where 0 < p < 1.

Show that $p = \frac{2}{3}$.

(b)The following diagram shows [CD], with length b cm, where b > 1. Squares with side lengths k cm, k^2 cm, k^3 cm, ..., where 0 < k < 1, are drawn along [CD]. This process is carried on indefinitely. The diagram shows the first three squares.

The total sum of the areas of all the squares is $\frac{9}{16}$. Find the value of b.

Analysis and approaches (SL) Geometric sequence	Learning
·	Learning

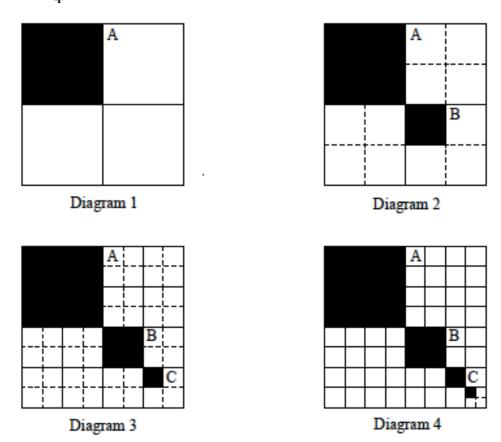
IBDP Mathematics

IBDP Mathematics Analysis and approaches (SL) Geometric sequence

Paper 2 exercise

1. Consider a geometric sequence where the first term is 768 and the second term is 576. Find the least value of n such that the n th term of the sequence is less than 7.				

IBDP Mathematics Analysis and approaches (SL) Geometric sequence


- 2. (a) Consider an infinite geometric sequence with $u_1 = 40$ and $r = \frac{1}{2}$.
- (i) Find u_{14}
- (ii) Find the sum of the infinite sequence.

Consider an arithmetic sequence with n terms, with first term (-36) and eighth term (-8).

- (b) (i) Find the common difference.
 - (ii) Show that $S_n = 2n^2 38n$.
- (c) The sum of the infinite geometric sequence is equal to twice the sum of the arithmetic sequence. Find n.

3. The diagrams below show the first four squares in a sequence of squares which are subdivided in half. The area of the shaded square a is $\frac{1}{4}$.

- (a) (i) Find the area of square B and of square C.
 - (ii) Show that the areas of squares A, B and C are in geometric progression.
 - (iii) Write down the common ratio of the progression.
- (b) (i) Find the total area shaded in diagram 2.
 - (ii) Find the total area shaded in the 8th diagram of this sequence. Give your answer correct to six significant figures.
- (c) The dividing and shading process illustrated is continued indefinitely. Find the total area shaded.

Analysis and approaches (SL) Geometric sequence	Learning

IBDP Mathematics