

Binomial expansion

Binomial theorem

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$

Pascal's triangle

Number of terms = n + 1

Binomial expansion

1. Expand $(3x + 4)^3$	•		
2. Expand $(4x + 4)^4$			

Binomial coefficient

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Paper 1 skill

1. Find the value of $\binom{11}{8}$.

- 2. Find the value of $\binom{7}{3}$.

Paper 2 GDC Skill

$$\binom{n}{r} = nCr$$

Casio

OPTN \rightarrow F6 \rightarrow F3 PROB \rightarrow F3 nCr

TI-84

 $2^{nd} \rightarrow Math \rightarrow PROB \rightarrow 3: nCr$

TI-nspire

Menu \rightarrow 5: Probability \rightarrow 3: Combinations

e.g.
$$\binom{9}{4}$$

nCr (9, 4)

Find the nth term

The nth term is T_{r+1} = $\binom{n}{r}$ a^{n-r} b^r

1. Find the 5th term of $(4x + \frac{2}{x})^7$.

2. Find the 7th term of $(2x^2 + \frac{6}{x})^7$.