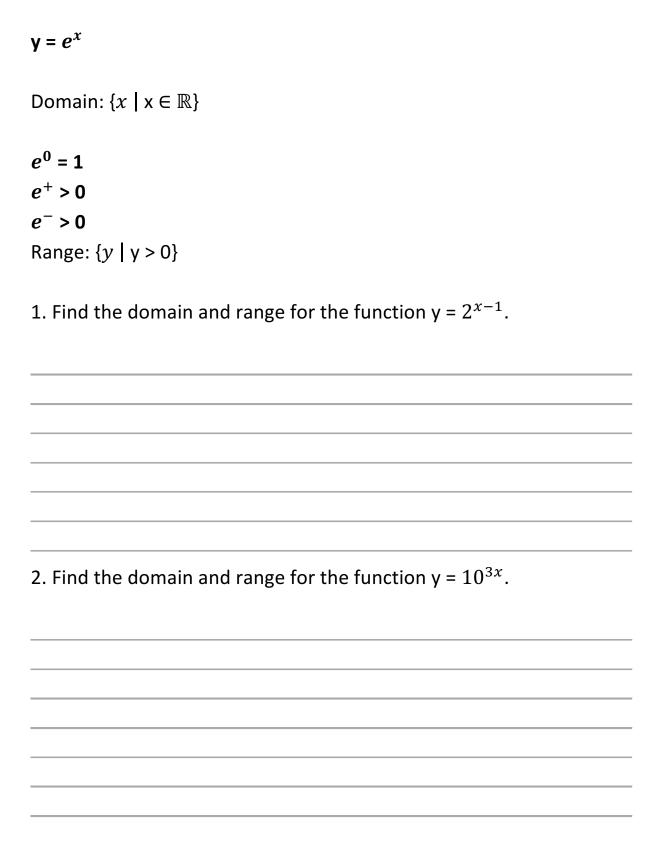


Garth of exponential functions

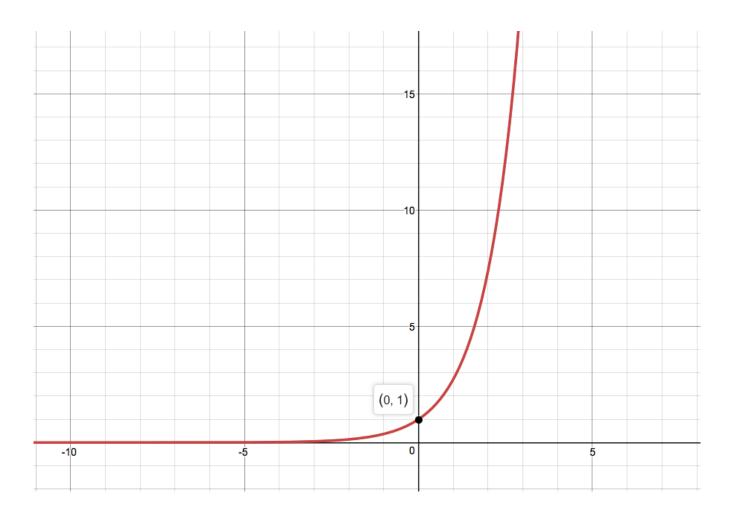


$$y = e^x$$

Horizontal asymptote: y = 0

No x-intercept

y-intercept = 1



1. Graph the function $y = 2^{x-1}$ without using GDC, indicate the y-intercept and horizontal asymptote.

Garth of logarithmic functions

$$y = \log_{10}(x)$$

when it is rearranged, $10^x = y$

10 is the base

x is the power, power can be all real numbers.

y is the result, it must be positive value.

The bracket inside must be positive!

Domain: $\{x \mid x > 0\}$ Range: $\{y \mid y \in \mathbb{R}\}$

1. Find the domain and range for the function $y = log_3(x + 10)$.

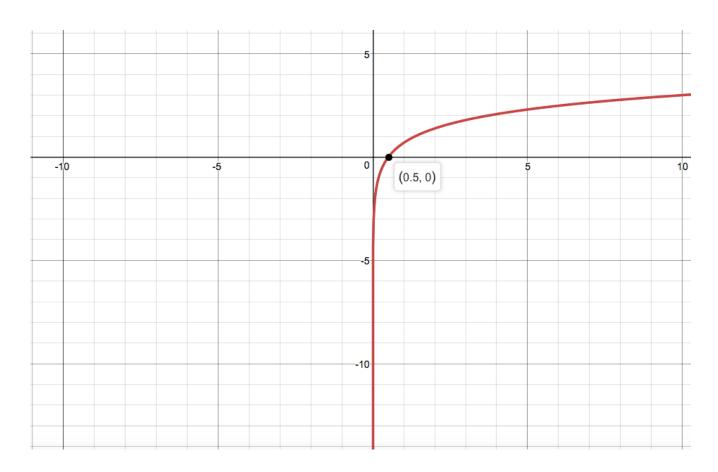
2. Find the domain and range for the function $y = \ln (2x - 4)$.

y = In 2x

Vertical asymptote: x = 0

No y-intercept

x-intercept = 0.5



1. Graph the function $y = \log_{10}(0.5x)$ without using GDC, indicate the x-intercept and vertical asymptote.

Exercise

Paper 1

- (a) Given that $f^{-1}(1) = 8$, find the value of k.
- (b) Find $f^{-1}\left(\frac{2}{3}\right)$.

Paper 2

- 1. \bigcirc A population of rate birds, P_t , can be modelled by the equation $P_t = P_0 e^{kt}$, where P_0 is the initial population, and t is measured in decades. After one decade, it is estimated that $\frac{P_1}{P_0} = 0.9$.
- (a) (i) Find the value of k.
 - (ii) Interpret the meaning of the value of k.

(b) Find the least number of whole years for which $\frac{P_t}{P_0}$ < 0.75.							

- 2. The number of bacteria, n, in a dish, after t minutes is given by $n = 800 \ e^{0.13t}$.
- (a) Find the value of n when t = 0.
- (b) Find the rate at which n is increasing when t = 15.
- (c) After k minutes, the rate of increase in n is greater than 10 000 bacteria per minute. Find the least value of k, where $k \in \mathbb{Z}$.