

Laws of probability

$P(A \cup B) = P(A) + P(B) - P(A \cap B)$

2. If P(A) = 0.5, P(B) = 0.4 and $P(A \cup B) = 0.8$, find $P(A \cap B)$.

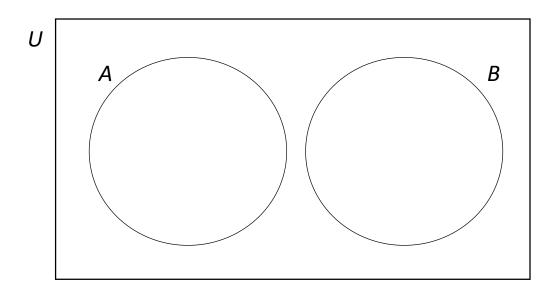
Independent event

$$P(A \cap B) = P(A) P(B)$$

The occurrence of each one of them does not affect the probability that the other occurs.

E.g. The probability of getting number 1 faces down in tossing a dice is independent to the probability of getting a head in throwing a fair coin.

1. If P(A) = 0.5, P(B) = 0.4 and $P(A \cup B) = 0.7$, are A and B


independent events?	

Mutually exclusive

$$P(A \cup B) = 0$$

$$P(A \cup B) = P(A) + P(B)$$

1. Given that P(A) = 0.5, P(B) = 0.3 and $P(A \cup B) = k$. Find k if (a) A and B are independent

IBDP Mathematics Analysis and approaches (SL) Law of probability

Exercise

Paper 1

1.	Events	A and	B are in	depende	ent with	P(A ∩	B) = 0.	2 a	nd
	P(A' ∩	B)=O.	.6.						

(a) Find (B).		
(b) Find P(A ∪ B).		

IBDP Mathematics Analysis and approaches (SL) Law of probability

- 2. Two events A and B are such that P(A) = 0.2 and $P(A \cup B) = 0.5$.
- (a) Given that A and B are mutually exclusive, find P(B).

(b) Given that A and B are independent, find P(B).						

Paper 2

1. Two events A and B are such that $P(A) = 0.2$ and $P(A \cup B) = 0.5$.
(a) Given that A and B are mutually exclusive, find $P(B)$.
(b) Given that A and B are independent, find $P(B)$.

- 2. Let C and D be independent events, with P(C) = 2k and $P(D) = 3k^2$, where 0 < k < 0.5.
- (a) Write down an expression for $P(C \cap D)$ in terms of k.
- (b) Given that $P(C \cap D) = 0.162$, find k.
- (c) Find P(C'|D).