

Solid	Surface Area	Volume
height, h length, l	2hw + 2hl + 2wl	h x w x l
Cylinder	$2\pi r^2 + 2\pi rh$	$\pi r^2 h$
Cone	$\pi r^2 + \pi r l$ where $l = \sqrt{r^2 + h^2}$	$\frac{1}{3}\pi r^2 h$
Pyramid	Sum of areas of all the faces	$\frac{1}{3}$ x base area x h
Sphere	$4\pi r^2$	$\frac{4}{3}\pi r^3$

1. Find the surface area and volume of the following figures.

(a)		 8.3 cm
(b)		10 m 6 m

IBDP Mathematics Analysis and approaches (SL) 3D shape

Combination of solides

1. Find the volume of:	
(a)	2 m
	12 111
(b)	
	2 cm

The angle between a line and a plane

1. Find the measure of angle ABC.	A 6 cm 11 cm B 14 cm C

2. Find the measure of the angle AHG and DFH.

D C 6 c F F 4 cm

Exercise

1. A solid glass paperweight consists of a hemisphere of diameter 6 cm on top of a cuboid with a square base of length 6 cm, as shown in the diagram.

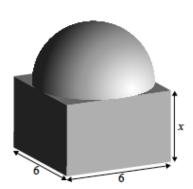
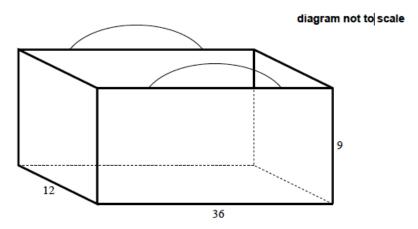


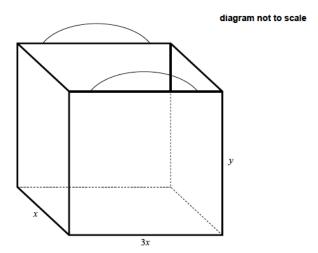
diagram not to scale

The height of the cuboid, *x* cm, is equal to the height of the hemisphere.


- (a) (i) Write down the value of x.
- (ii) Calculate the volume of the paperweight.

1 cm³ of glass has a mass of 2.56 grams.

(b)	Calculate	the mass,	in	grams,	of the	paperw	eight.



2. Haruka has an eco-friendly bag in the shape of a cuboid with width 12 cm, length 36 cm and height of 9 cm. The bag is made from five rectangular pieces of cloth and is open at the top.

- (a) Calculate the area of cloth, in cm², needed to make Haruka's bag.
- (b) Calculate the volume, in cm³, of the bag.

Nanako decides to make her own eco-friendly bag in the shape of a cuboid such that the surface area is minimized. The width of Nanako's bag is x cm, its length is three times its width and its height is y cm.

The volume of Nanako's bag is 3888 cm³.

(This question continues on the following page.)

- (c) Use this value to write down, and simplify, the equation in x and y for the volume of Nanako's bag.
- (d) Write down and simplify an expression in x and y for the area of cloth, A, used to make Nanako's bag.
- (e) Use your answers to parts (c) and (d) to show that

$$A = 3x^2 + \frac{10368}{x}.$$

IBDP Mathematics Analysis and approaches (SL)	C
3D shape	Learning

