Differentiation rules

Derivative

$$y' = \frac{dy}{dx} - f'(x)$$

Slope of the curve Slope of the tangent line Rate of change

Put power down, Power – 1

6.2	Derivative of x^n	$f(x) = x^n \implies f'(x) = nx^{n-1}$
	Derivative of $\sin x$	$f(x) = \sin x \implies f'(x) = \cos x$
	Derivative of $\cos x$	$f(x) = \cos x \implies f'(x) = -\sin x$
	Derivative of tan x	$f(x) = \tan x \implies f'(x) = \frac{1}{\cos^2 x}$
	Derivative of e ^x	$f(x) = e^x \implies f'(x) = e^x$
	Derivative of $\ln x$	$f(x) = \ln x \implies f'(x) = \frac{1}{x}$
	Chain rule	$y = g(u), u = f(x) \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$
	Product rule	$y = uv \implies \frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
	Quotient rule	$y = \frac{u}{v} \implies \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Simple differentiation

Find the derivative of the following functions.

1.
$$y = 4x$$

2. $y = 5x^3$

3. *y* = $10\sqrt{x}$

4. y = 20

5.
$$y = \frac{9}{x^3}$$

6.
$$y = 5x^3 + 4x - 29$$

7.
$$y = 2(3x - 2)$$

8.
$$y = \frac{4}{3}x^6 + 5x^2 + 2x$$

9.
$$y = \frac{1}{3x^3} - 2x^2 - 5$$

Book a free trial lesson! WhatsApp: 9247 7667 COPYRIGHT © 2019 CM Square Learning Center. All rights reserved.

Find the gradient of the curve

1.
$$y = 10x^3$$
 at $x = 2$

2. $y = 4x^2 - 5x + 2$ at x = 1

3. $y = \frac{3}{x^3} - 2x$ at x = 3

4. $y = \frac{3}{\sqrt{x}} - 2x$ at x = 2

5. $y = (x + 3)^3$ at x = -2

Chain rule

Find y' of the following functions

1.
$$y = (5x - 2)^3$$

2.
$$y = 6(x^2 + 3x - 4)^2$$

$$3. y = \frac{5}{4x - x^2}$$

4.
$$y = \frac{8}{(9x+3)^2}$$

5.
$$y = \sqrt{x^2 + 3}$$

Paper 1

- 1. Onsider $f(x) = x^2 sinx$.
- (a) Find f'(x).

(b) Find the gradient of the curve of f at $x = \frac{\pi}{2}$.

- 2. Siven that $f(x) = \frac{1}{x}$, answer the following.
- (a) Find the first four derivatives of f(x).
- (b) Write an expression for $f^{(n)}(x)$ in terms of x and n.