

1

Differentiation rules

Derivative

$$y' = \frac{dy}{dx} - f'(x)$$

Slope of the curve Slope of the tangent line Rate of change

Put power down, Power – 1

	L	L
6.2	Derivative of x^n	$f(x) = x^n \implies f'(x) = nx^{n-1}$
	Derivative of $\sin x$	$f(x) = \sin x \implies f'(x) = \cos x$
	Derivative of $\cos x$	$f(x) = \cos x \implies f'(x) = -\sin x$
	Derivative of tan x	$f(x) = \tan x \implies f'(x) = \frac{1}{\cos^2 x}$
	Derivative of e ^x	$f(x) = e^x \implies f'(x) = e^x$
	Derivative of $\ln x$	$f(x) = \ln x \implies f'(x) = \frac{1}{x}$
	Chain rule	$y = g(u), u = f(x) \implies \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
	Product rule	$y = uv \implies \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
	Quotient rule	$y = \frac{u}{v} \implies \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Book a free trial lesson! WhatsApp: 9247 7667 COPYRIGHT © 2019 CM Square Learning Center. All rights reserved.

Simple differentiation

Find the derivative of the following functions.

1.
$$y = 4x$$

2. $y = 5x^3$

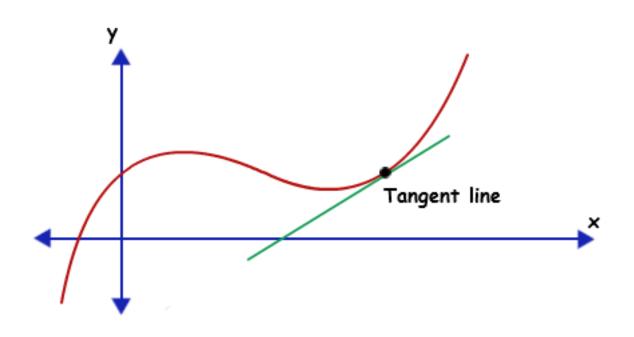
3. $y = 10\sqrt{x}$

4. y = 20

Find the gradient of the curve

1.
$$y = 10x^3$$
 at $x = 2$

2.
$$y = 4x^2 - 5x + 2$$
 at $x = 1$


3.
$$y = \frac{3}{x^3} - 2x$$
 at $x = 3$

Equation of tangent and normal

Meaning of derivative $y', \frac{dy}{dx}, f'(x)$

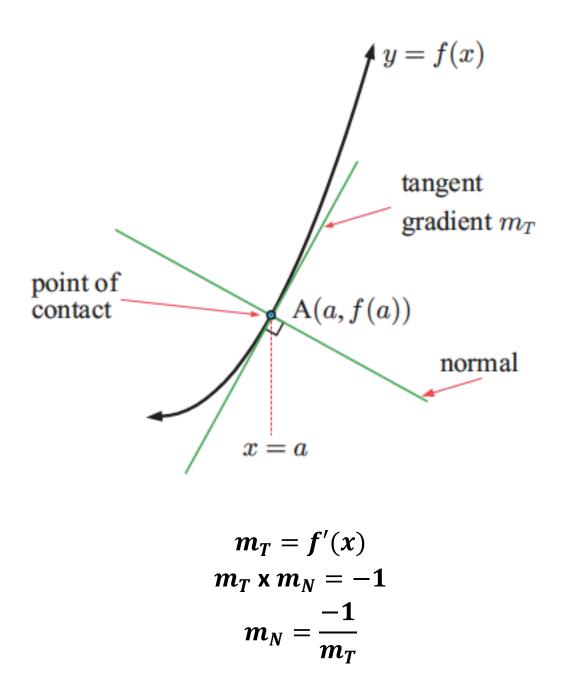
Slope of the curve Slope of the tangent line

Two steps to find the equation of straight line

$$y = mx + c$$

1. Slope (m)

2. point (x, y)



1. Find the equation of the tangent to $f(x) = 2x^2 + 5$ at the point where x = 2.

2. Find the equation of the tangent to $f(x) = x^3 - 4x$ at (1, -3).

Equation of normal

1. Find the equation of the normal to $f(x) = 2x^2 - 10$ at the point where x = -1.

2. Find the equation of the normal to $f(x) = 5x^3 + \frac{2}{x^2} + 2$ at the point where x = 2.

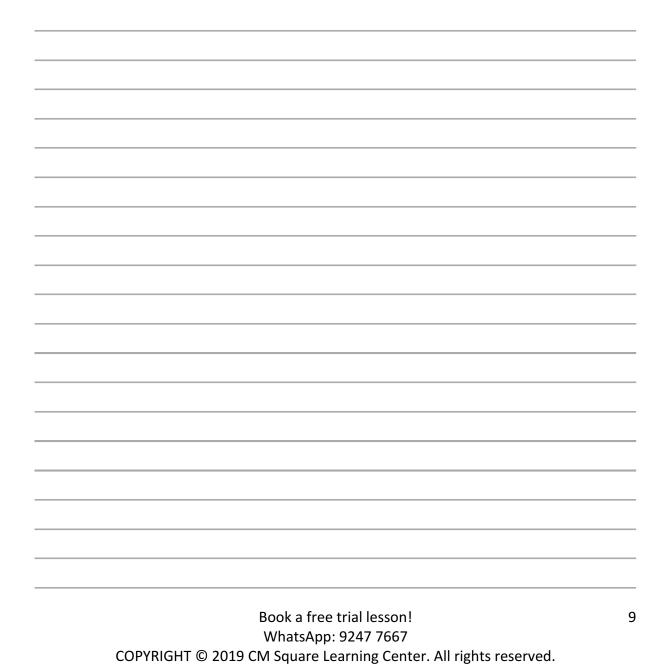
Exercise

1. Consider the curve $y = 5x^3 - 3x$. (a) Find $\frac{dy}{dx}$.

The curve has a tangent at the point P(-1, -2).

(b) Find the gradient of this tangent at point P.

(c) Find the equation of this tangent. Give your answer in the form y = mx + c.



2. Consider the function
$$f(x) = \frac{x^4}{4}$$
.

(a) Find f'(x).

(b) Find the gradient of the graph of f at $x = -\frac{1}{2}$.

(c) Find the x-coordinate of the point at which the **normal** to the graph of f has gradient $-\frac{1}{8}$.

3. A function f is given by
$$f(x) = 4x^3 + \frac{3}{x^2} - 3$$
, $x \neq 0$.

(a) Write down the derivative of f.

(b) Find the point on the graph of f at which the gradient of the tangent is equal to 6.

4. The equation of a curve is
$$y = \frac{1}{2}x^4 - \frac{3}{2}x^3 + 7$$
.

(a) Find
$$\frac{dy}{dx}$$
.

The gradient of the tangent to the curve at a point P is -10. (b) Find the coordinate of P.

