

# 21. Measurement and analysis (HL)

#### **Syllabus:**

## 21.1 Spectroscopic identification of organic compounds

Structural identification of compounds involves several different analytical techniques including IR, <sup>1</sup>H NMR and MS.

In a high resolution  $^1\mathrm{H}$  NMR spectrum, single peaks present in low resolution can split into further clusters of peaks.

The structural technique of single crystal X-ray crystallography can be used to identify the bond lengths and bond angles of crystalline compounds.

### 21.1 Spectroscopic identification of organic compounds

## (A) Further NMR spectroscopy

There are 12 H nuclei which are in the same environment in TMS molecule, and NMR signals are measured against a standard produced by them.

In low-resolution <sup>1</sup>H NMR, there are several single peaks.

But in high-resolution <sup>1</sup>H NMR, the peaks are not only just single peaks, some may split into a group of smaller parts.

The splitting is due to the spin – spin coupling, that depends on the number of adjacent protons.

Three key things for the high-resolution <sup>1</sup>H NMR,

- Protons bonded to the same atom do not interact with one another as they are equivalent and behave as a group
- Protons on non-adjacent carbon atoms do not generally interact with one another
- ➤ The O-H single peak in ethanol does not split.

| Numbers of      | Number of split | Pascal pattern | Splitting pattern |
|-----------------|-----------------|----------------|-------------------|
| adjacent proton | (n + 1)         |                |                   |
| (n)             |                 |                |                   |
| 0               | 1               | 1              | Singlet           |
| 1               | 2               | 1 1            | Doublet           |
| 2               | 3               | 1 2 1          | Triplet           |
| 3               | 4               | 1 3 3 1        | Quartet           |
| 4               | 5               | 1 4 6 4 1      | Quintet           |
| 5               | 6               | 1 5 10 10 5 1  | Sextet            |