

		Ledrning Center	
Prior learning		Topic 1 Number and Algebra	
Area of a	A = bh	The n th term of A.S.	$u_n = u_1 + (n-1)d$
parallelogram	b = base, h = height		
Area of a triangle	$A = \frac{1}{2}bh$	The sum of n terms of A.S.	$S_n = \frac{n}{2}(2u_1 + (n-1)d)$
	2		$=\frac{n}{2}(u_1+u_n)$
Avec of a	. 1,	The n th terms of G.S.	$u_n = u_1 r^{n-1}$
Area of a	$A = \frac{1}{2} (a + b)h$	The naterms of G.S.	$u_n = u_1 r^{n-1}$
trapezoid	a, b = parallel sides, h = height		
Area of a circle	$A = \pi r^2, r \text{ is radius}$	The sum of n terms of G.S.	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}$, $r \neq 1$
Circumference of	$C = 2\pi r, r \text{ is radius}$	Compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}$, where
a circle			100k7
			FV= future value, PV = present
			value, n = number of years, k =
			number of compounding periods
			per year, $r\%$ = nominal annual rate
			interest
Volume of a	V = lwh	Exponents and logarithms	$a^x = b \iff x = log_a b$
cuboid	2.		[17
Volume a	$V = \pi r^2 h$	Percentage error	$\mathcal{E} = \left \frac{V_A - V_E}{V_E} \right \times 100\%$, where V_E is
cylinder			the exact value and V_A is the
			approximate value of v
Volume of a	V = Ah, where A is the area of		
Volume of a prism	V = Ah, where A is the area of cross-section, h is the height	Topic 3 Geom	etry and trigonometry
		Topic 3 Geom	etry and trigonometry
prism	cross-section, h is the height	•	
prism Area of the	cross-section, h is the height	•	etry and trigonometry
prism Area of the curved surface of	cross-section, h is the height $A=2\pi rh$	•	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$
prism Area of the curved surface of a cylinder	cross-section, h is the height	Arc length	etry and trigonometry $l=\frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A=\frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in}$
prism Area of the curved surface of a cylinder Two points distance	cross-section, h is the height $A = 2\pi r h$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$	Arc length Sector area	etry and trigonometry $l=\frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A=\frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ degree
prism Area of the curved surface of a cylinder Two points	cross-section, h is the height $A=2\pi rh$	Arc length	etry and trigonometry $l=\frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A=\frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2=a^2+b^2-2ab\cos C$
prism Area of the curved surface of a cylinder Two points distance	cross-section, h is the height $A = 2\pi r h$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$	Arc length Sector area	etry and trigonometry $l=\frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A=\frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2=a^2+b^2-2ab\cos C$
prism Area of the curved surface of a cylinder Two points distance Midpoint	cross-section, h is the height $A=2\pi rh$ $d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ $\left(\frac{x_1+x_2}{2}\ ,\ \frac{y_1+y_2}{2}\right)$	Arc length Sector area	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{a} = \frac{b}{a} = \frac{c}{a}$
prism Area of the curved surface of a cylinder Two points distance Midpoint	cross-section, h is the height $A = 2\pi r h$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Dic 2 Functions	Arc length Sector area Cosine rule Sine rule	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
prism Area of the curved surface of a cylinder Two points distance Midpoint Top Straight line	cross-section, h is the height $A = 2\pi r h$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Dic 2 Functions	Arc length Sector area Cosine rule	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{a} = \frac{b}{a} = \frac{c}{a}$
prism Area of the curved surface of a cylinder Two points distance Midpoint Top Straight line gradient	cross-section, h is the height $A = 2\pi r h$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Dic 2 Functions $m = \frac{y_2 - y_1}{x_2 - x_1}$	Arc length Sector area Cosine rule Sine rule Area of a triangle	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $A = \frac{1}{2}ab \sin C$
prism Area of the curved surface of a cylinder Two points distance Midpoint Top Straight line gradient Straight line	cross-section, h is the height $A = 2\pi r h$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Dic 2 Functions	Arc length Sector area Cosine rule Sine rule	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
prism Area of the curved surface of a cylinder Two points distance Midpoint Top Straight line gradient Straight line equation	cross-section, h is the height $A = 2\pi rh$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $y = mx + c \; ; \; ax + by + d = 0$	Arc length Sector area Cosine rule Sine rule Area of a triangle Surface area of a sphere	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $A = \frac{1}{2}absin C$ $A = 4\pi r^2$
prism Area of the curved surface of a cylinder Two points distance Midpoint Top Straight line gradient Straight line	cross-section, h is the height $A = 2\pi rh$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $\mathbf{Dic 2 Functions}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $y = mx + c \; ; \; ax + by + d = 0$ $f(x) = ax^2 + bx + c$	Arc length Sector area Cosine rule Sine rule Area of a triangle	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $A = \frac{1}{2}ab \sin C$
prism Area of the curved surface of a cylinder Two points distance Midpoint Top Straight line gradient Straight line equation	cross-section, h is the height $A = 2\pi rh$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $y = mx + c \; ; \; ax + by + d = 0$	Arc length Sector area Cosine rule Sine rule Area of a triangle Surface area of a sphere Volume of a sphere	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $A = \frac{1}{2}ab\sin C$ $V = \frac{4}{3}\pi r^3$
prism Area of the curved surface of a cylinder Two points distance Midpoint Top Straight line gradient Straight line equation	cross-section, h is the height $A = 2\pi rh$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $\mathbf{Dic 2 Functions}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $y = mx + c \; ; \; ax + by + d = 0$ $f(x) = ax^2 + bx + c$	Arc length Sector area Cosine rule Sine rule Area of a triangle Surface area of a sphere	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $A = \frac{1}{2}absin C$ $A = 4\pi r^2$
prism Area of the curved surface of a cylinder Two points distance Midpoint Top Straight line gradient Straight line equation	cross-section, h is the height $A = 2\pi rh$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $\mathbf{Dic 2 Functions}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $y = mx + c \; ; \; ax + by + d = 0$ $f(x) = ax^2 + bx + c$	Arc length Sector area Cosine rule Sine rule Area of a triangle Surface area of a sphere Volume of a sphere Volume of a pyramid or cone	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $A = \frac{1}{2}ab\sin C$ $A = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$ $V = \frac{1}{3} \times \text{base area } \times \text{ vertical height}$
prism Area of the curved surface of a cylinder Two points distance Midpoint Top Straight line gradient Straight line equation	cross-section, h is the height $A = 2\pi rh$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $\mathbf{Dic 2 Functions}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $y = mx + c \; ; \; ax + by + d = 0$ $f(x) = ax^2 + bx + c$	Arc length Sector area Cosine rule Sine rule Area of a triangle Surface area of a sphere Volume of a sphere Volume of a pyramid or	etry and trigonometry $l = \frac{\theta}{360} \times 2\pi r \text{ , where } \theta \text{ is in degree}$ $A = \frac{\theta}{360} \times \pi r^2 \text{ , where } \theta \text{ is in degree}$ $c^2 = a^2 + b^2 - 2ab \cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $A = \frac{1}{2}ab\sin C$ $V = \frac{4}{3}\pi r^3$

Topic 4 Statistics and probability		Topic 5 Calculus	
Mean of a set of	$ar{x} = rac{\sum_{i=1}^k f_i x_i}{n}$, where $n \sum_{i=1}^k f_i$	Derivative of x^n	$f(x) = x^n \to f'(x) = nx^{n-1}$
data	n , where $n \supseteq_{l=1}^{n} f_l$		
Interquartile	$IQR = Q_3 - Q_1$	Integral of x^n	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq 1$
range			n+1
Probability of an	$P(A) = \frac{n(A)}{n(U)}$	Area under a	$A = \int_{a}^{b} y dx$
event A	n(U)	curve between	
		x = a and	
		x = b	
Complementary	P(A) + P(A') = 1	The trapezoidal	$\int_a^b y \ dx$
events		rule	$\approx \frac{1}{2}h((y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}))$
Combined events	$P(A \cup B)$		-
	$= P(A) + P(B) - P(A \cap B)$		
Mutually	$P(A \cup B) = P(A) + P(B)$		
exclusive events			
Conditional	$P(A B) = \frac{P(A \cap B)}{P(B)}$		
probability	- (-)		
Independent	$P(A \cup B) = P(A)P(B)$		
events			
Expected value of	$E(X) = \sum x P(X = x)$		
a discrete			
random variable			
X			
Binomial	$X \sim B(n, p)$		
distribution			
Mean	E(X) = np		
	Var(X) = np(1-p)		
Variance	(-) (-)		