

Topic 10 Organic chemistry(SL)

Syllabus:

10.1 Fundamental of organic chemistry

- A homologous series is a series of compounds of the same family, with the same general formula, which
- differ from each other by a common structural unit.
- Full and condensed structural formula
- Definition of structural formula
- Functional groups are the reactive parts of molecules
- The difference between saturated and unsaturated compounds
- Benzene is an aromatic, unsaturated hydrocarbon

10.2 Fundamental of group chemistry

Alkanes have low reactivity and undergo free-radical substitution reactions

Alkenes are more reactive than alkanes and undergo addition reactions

Bromine water can be used to distinguish between alkenes and alkanes

- Alcohols undergo nucleophilic substitution reactions with acids and some undergo oxidation reactions
- Halogenoalkanes are more reactive than alkanes. They can undergo nucleophilic substitution reactions.

A nucleophilic is an electron-rich species containing a lone pair that it donates to an electron-deficient carbon.

10.1 Fundamental of organic chemistry

(A) Homologous series

Organic compounds are classified into "families" of compounds known as **homologous series**. The followings are the main features of homologous series.

- Same general formula
- ➢ Successive members differ by a −CH₂− group
- Similar chemical properties
- ➢ Gradual change in physical properties

Alkane	Boiling point / °C	
Methane	CH ₄	-160
Ethane	C ₂ H ₆	-89
Propane	C ₃ H ₈	-41
Butane	C_4H_{10}	-1
Pentane	C ₅ H ₁₂	35

(B) Empirical, molecular and structural formulas for organic compounds

Empirical formula of a compound is the simplest whole number ratio of the atoms it contains. **Molecular formula** of a compound is the actual number of atoms of each element present in a molecule.

For Glucose, $C_6H_{12}O_6$ is the molecular formula and CH_2O is the empirical formula.

Structural formula is a representation of the molecule showing how the atoms are bonded to each other.

Compound Ethane		Ethanoic acid	Glucose	
Empirical formula	CH₃	CH₂O	CH₂O	
Molecular formula	C ₂ H ₆	C ₂ H ₄ O ₂	C ₆ H ₁₂ O ₆	
Full structural formula	Н Н H—С—С—Н Н Н		$ \begin{array}{c} H \\ C \\ H \\ C \\ H \\ H \\ C \\ O \\ H \\ H$	
Condensed structural formula	CH ₃ CH ₃	CH₃COOH	CHO(HCOH)₄CH₂OH	

Book a free trial lesson! WhatsApp: 9247 7667 COPYRIGHT © 2019 CM Square Learning Center. All rights reserved.

(C) Functional group

Class	Functional group	Name of functional group	Suffix in IUPAC name	Example of compound	General formula
alkane			-ane	C ₂ H ₆ , ethane	C _n H _{2n+2}
alkene)c=c	alkenyl	-ene	$H_2C == CH_2$, ethene	C _n H _{2n}
alkyne	—c≡c—	alkynyl	-yne	HC≡≡CH, ethyne	C _n H _{2n-2}
alcohol	—OH	hydroxyl	-anol	C ₂ H ₅ OH, ethanol	C _n H _{2n+1} OH
ether	R—O—R′	ether	-oxyalkane	$H_3C - O - C_2H_5$, methoxyethane	R—O—R′
aldehyde	-c	aldehyde (carbonyl)	-anal	C ₂ H ₅ CHO, propanal	R—CHO
ketone		carbonyl	-anone	CH ₃ COCH ₃ , propanone	R—CO—R'
carboxylic acid	-с_о_н	carboxyl	-anoic acid	C ₂ H ₅ COOH, propanoic acid	C _n H _{2n+1} COOH
ester*		ester	-anoate	C ₂ H ₅ COOCH ₃ , methyl propanoate	R—COO—R'
amide	-C_N_H	carboxyamide	-anamide	C ₂ H ₅ CONH ₂ , propanamide	
amine	NH ₂	amine	-anamine	$C_2H_5NH_2$, ethanamine	
nitrile	—c≡n	nitrile	-anenitrile	C ₂ H ₅ CN, propanenitrile	
arene	C ₆ H ₅ .	phenyl	-benzene	C ₆ H ₅ CH ₃ , methyl benzene	

MCQ

- 1. Which properties are features of a homologous series?
 - I. Same general formula
 - II. Similar chemical properties
 - III. Graduate change in physical properties
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 2. What is the general formula of the alkyne series?
 - A. C_nH_n
 - B. C_nH_{2n-2}
 - C. $C_n H_{2n}$
 - D. C_nH_{2n+2}
- 3. Which functional group is present in paracetamol?

- A. Carboxyl
- B. Amino
- C. Nitrile
- D. Hydroxyl

- 4. Which statement is correct for members of the same homologous series?
 - A. They have the same empirical formula and a gradual change in chemical properties.
 - B. They have the same empirical formula and a gradual change in physical properties.
 - C. They have the same general formula and a gradual change in chemical properties.
 - D. They have the same general formula and a gradual change in physical properties.
- 5. Which compound is an amide?
 - A. CH₃COOCH₃
 - B. CH₃CONH₂
 - C. CH₃NH₂
 - D. $CH_2(NH_2)COOH$
- 6. Which of the following pairs are members of the same homologous series?
 - A. CH₃CH₂CH₂OH and CH₃CH₂CHO
 - B. CH₃CH(OH)CH₃ and CH₃CH₂CH(OH)CH₃
 - C. CH₃COCH₃ and CH₃CH₂COOH
 - D. CH₃COCH₂CH₃ and CH₃CH₂CHO
- 7. Which of the structures below is an aldehyde?
 - A. $CH_3CH_2CH_2CH_2OH$
 - B. CH₃CH₂COCH₃
 - C. CH₃CH₂COOCH₃
 - D. $CH_3CH_2CH_2CHO$