

# Topic 18 Acids and bases (HL)

#### Syllabus:

### 18.1 Lewis acids and bases

Definition of Lewis acid and base

Coordinate bond is formed between Lewis acid and Lewis base.

A nucleophile is a Lewis base and an electrophile is a Lewis acid.

## 18.2 calculations involving acids and bases

 $K_a$  and  $K_b$  are the expression for the dissociation constant of a weak acid and weak base.

For a conjugate acid base pair,  $K_w = K_a \times K_b$ .

 $pK_a = -logK_a$  and  $pK_b = -logK_b$ 

## 18.3 pH curves

The characteristics of the pH curves produced by the different combinations of strong and weak acids and bases.

An acid-base indicator is a weak acid or a weak base where the components of the conjugate acid-base pair have different colours.

The relationship between the pH range of an acid–base indicator, which is a weak acid, and its pK<sub>a</sub> value.

The buffer region on the pH curve represents the region where small addition of acid or base result in little or no change in pH.

The composition and action of a buffer solution.

#### 18.1 Lewis acids and bases

- > A Lewis acid is electron pair acceptor.
- > A Lewis base is electron pair donor.

#### Example:

 $\mathrm{H^{+}+NH_{3}} \rightarrow \mathrm{NH_{4}^{+}}$ 



> Formation of coordinate bond involves Lewis acid and Lewis base.



In the above example,  $BF_3$  is Lewis acid and  $NH_3$  is Lewis base. Coordinate bond is formed by donating a lone pair electron from  $NH_3$  to  $BF_3$ .

- The formation of complex ion also involves Lewis acid and base.
   Cu<sup>2+</sup>(aq) + 6H<sub>2</sub>O(l) → [Cu(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>(aq)
   H<sub>2</sub>O is a ligand and Lewis base which is a lone pair donor.
   Cu<sup>2+</sup> is Lewis acid which is a lone pair acceptor.
- Lewis acid is an electrophile, an electron-deficient species that accepts a lone pair from another reactant to form a new covalent bond.
- Lewis base is a nucleophile, an electron-rich species that donates a lone pair to form a new covalent in a reaction.
- > All Brønsted-Lowry acid or base are Lewis acid or base.



## MCQ

1. Which descriptions are correct for both a Bronsted-Lowery acid and Lewis acid?

|    | Bronsted-Lowery acid | Lewis acid             |
|----|----------------------|------------------------|
| А. | Proton donor         | Electron pair donor    |
| В. | Proton donor         | Electron pair acceptor |
| С. | Proton acceptor      | Electron pair donor    |
| D. | Proton acceptor      | Electron pair acceptor |

- 2. Which substance can act as a Lewis acid but not as a Bronsted-Lowery acid?
  - A. HCl
  - B.  $CH_3COOH$
  - C.  $BF_3$
  - D. CF<sub>3</sub>COOH
- 3. Which of the following is an example of a Lewis acid-base reaction, but not a Bronsted-Lowery acid-base reaction?
  - A.  $2 \text{Cr}_{0_4}^{2-}(\text{aq}) + 2 \text{H}^+(\text{aq}) \rightarrow \text{Cr}_2 \text{O}_7^{2-}(\text{aq}) + \text{H}_2 \text{O}(\text{l})$
  - B.  $Co(H_2O)_6^{2+}(aq) + 4HCl(aq) \rightarrow CoCl_4^{2-}(aq) + 4H^+(aq) + 6H_2O(l)$
  - C.  $NH_3(aq) + H^+(aq) \rightarrow NH_4^+(aq)$
  - D.  $CH_3COO^-(aq) + H_2O(l) \rightarrow CH_3COOH(aq) + OH^-(aq)$
- 4. In which reaction does  $H_2O$  act as Lewis base but not as a Bronsted-Lowery base.

A. 
$$H_2O + NH_4^+ \rightarrow H_3O^+ + NH_3$$
  
B.  $H_2O + CaO \rightarrow Ca^{2+} + 2OH^-$   
C.  $H_2O + [Fe(H_2O)_6]^{3+} \rightarrow [Fe(OH)(H_2O)_5]^{2+} + H_3O^+$ 

D.  $6H_2O + [Ni(NH_3)_6]^{2+} → 6NH_3 + [Ni(H_2O)_6]^{2+}$ 



### 18.2 Calculations involving acids and bases

#### (A) Dissociation of water

 $H_2O(l) \rightleftharpoons H^+ + OH^- \qquad \Delta H > 0$ , Endothermic

 $K_w = [H^+][OH^-]$ 

The value of  $K_w$  of 1.00 x  $10^{-14}$  at 298K.

The value of equilibrium constant is temperature dependent.

 $[H^+] = [OH^-]$  in water

Since the dissociation of water is an endothermic reaction, increasing temperature shifts the equilibrium position to right, the value of  $K_w$  increases and hence [H<sup>+</sup>] increases and the pH of water decreases.

## Try to explain why the pH of water is 7 at room temperature (298K).